Education Needed

High school students interested in studying electrical or electronics engineering benefit from taking courses in physics and mathematics, including algebra, trigonometry, and calculus. Courses in drafting are also helpful, because electrical and electronics engineers often are required to prepare technical drawings.

In order to enter the occupation, prospective electrical and electronics engineers need a bachelor’s degree in electrical engineering, electronics engineering, or electrical engineering technology. Programs include classroom, laboratory, and field studies. Courses include digital systems design, differential equations, and electrical circuit theory. Programs in electrical engineering, electronics engineering, or electrical engineering technology should be accredited by ABET.

Some colleges and universities offer cooperative programs in which students gain practical experience while completing their education. Cooperative programs combine classroom study with practical work. Internships provide similar experience and are growing in number.

At some universities, students can enroll in a 5-year program that leads to both a bachelor’s degree and a master’s degree. A graduate degree allows an engineer to work as an instructor at some universities, or in research and development.

How to actually become one

Electrical and electronics engineers must have a bachelor’s degree. Employers also value practical experience, so participation in cooperative engineering programs, in which students earn academic credit for structured work experience. Having a Professional Engineer (PE) license may improve an engineer’s chances of finding employment.

Semiconductor and other electronic component manufacturing $105,200
Research and development in the physical, engineering, and life sciences $104,820
Navigational, measuring, electromedical, and control instruments manufacturing $92,530
Engineering services $89,960
Electric power generation, transmission and distribution $88,790